Journal of Organometallic Chemistry, 391 (1990) C1-C6 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20898PC

Preliminary communication

CIDNP ¹H study of the photolysis of 7-silaand 7-germa-norbornadienes

S.P. Kolesnikov, M.P. Egorov, A.M. Galminas, M.B. Ezhova, O.M. Nefedov *

Zelinsky Institute of Organic Chemistry, U.S.S.R. Academy of Sciences, Leninsky Prosp., 47, 117913 Moscow (U.S.S.R.)

T.V. Leshina, M.B. Taraban, A.I. Kruppa and V.I. Maryasova

The Institute of Chemical Kinetics and Combustion, U.S.S.R. Academy of Sciences, 630090 Novosibirsk-90 (U.S.S.R.)

(Received March 15th, 1990)

Abstract

The photochemical decomposition of 7-sila- and 7-germa-norbornadienes (Ia,b) was studied by the CIDNP ¹H technique. The reactions proceeds by a two-step mechanism via the reversible formation of singlet biradicals, II. The triplet biradical (II), formed as a result of S-T conversion of (II)(S), irreversibly decomposes giving Me_2E (E = Si, Ge). The insertion of Me_2E into the C-Br bond of PhCH₂Br and the Sn-Cl bond of Me_3SnCl occurs via a radical mechanism, as deduced from the CIDNP effects observed in these reactions.

7-Sila- and 7-germa-norbornadienes (I) are convenient sources of the corresponding silylenes and germylenes under thermolysis or photolysis [1-6]. Two possible mechanisms for the decomposition of these compounds involving concerted (path A) or stepwise (path B) cleavage of endocyclic $E-C(sp^3)$ bonds have been discussed [1,3,4,7].

Recently, the mechanism of photochemical decomposition of 7,7-dimethyl-1,4,5,6-tetraphenyl-2,3-benzo-7-germanorbornadiene (**Ib**) has been studied by flash photolysis and low-temperature matrix-isolation techniques [8,9]. The formation of a biradical precursor of dimethylgermylene has been proposed [9]:

$$(\mathbf{Ib})(\mathbf{S}) + h\nu \rightarrow (\mathbf{Ib})^{\star}(\mathbf{T}) \rightarrow \mathbf{Me}_2\mathbf{Ge} + \mathbf{TPN}$$

In continuation of our investigations in this field we have studied the photolysis of 7-sila- and 7-germa-norbornadienes (Ia,b) by the CIDNP ¹H technique. In the course of photolysis of Ia,b we observed CIDNP effects both for the starting compounds Ia,b (emission of Me₂E group signals of Ia,b) and for their decomposition product, 1,2,3,4-tetraphenylnaphthalene (TPN) (enhanced absorption of Phprotons signals), see Fig. 1 and Table 1. The same pattern of Ia,b polarization was found when Ia,b were photolyzed in the presence of Me₂E-trapping agents (for example, Me₃SnCl). These results show that the polarized Ia,b and TPN have a paramagnetic precursor, namely, a biradical II.

Fig. 1. ¹H CIDNP during photolysis of Ia in C_6D_6 : (a) before irradiation; (b) during UV irradiation (40 s after the start of irradiation); (c) after irradiation. CIDNP of Ib gave identical results (see Table 1)

Table 1

Assignment	δ (ppm)	CIDNP	
GeMe, (la)	0.22; 0.94	E; E	
Me3SnGeMe2Cl	0.29	A	
Me ₃ SnGe Me ₂ Cl	0.78	Α	
Si Me	0.05; 0.72	E; E	
PhCH ₂ Si Me ₂ Br	0.39	E	
PhCH ₂ SiMe ₂ Br	2.32	Е	
Me ₂ SiBr ₂	0.80	Α	

¹H CIDNP during photolysis of Ia and Ib in the presence of PhCH₂Br and Me₃SnCl (A—enhanced absorption, E—emission)

Two mechanisms (S-T₀ and S-T_.) are proposed for CIDNP effects in biradicals [10,11]. CIDNP effects of opposite sign for the recombination (Ia,b) and decomposition (TPN) products of the biradical II testify in a favour of an S-T₀ mechanism. This mechanism may be realized when CIDNP effects occur in the conformation characterized by a small exchange interaction between radical centers. A consideration of molecular models of biradical II shows that such a small exchange interaction occurs when the orientation of an odd-electron orbital of germanium and the π -system of the naphthalene rings is close to perpendicular:

Based on this assumption the CIDNP effects of Ia,b and TPN were analysed. The biradical was simulated by a radical pair with the magnetic resonance parameters of phenylmethylgermyl and cyclohexadienyl free radicals [12]

The use of Kaptein's rules [13] for the observed CIDNP effects shows that the singlet biradical (II)(S) is formed from the S_1 state of Ia,b. The singlet biradical II recombines giving the polarized starting norbornadienes Ia,b. The triplet biradical II, formed as a result of S-T conversion, irreversibly decomposes with the formation of Me₂E (E = Si,Ge) and polarized TPN.

CIDNP effects were also observed in the course of insertions of Me_2E , photochemically generated from Ia,b, into the C-Br bond of PhCH₂Br and the Sn-Cl

Fig. 2. ¹H CIDNP during photolysis of Ia in the presence of PhCH₂Br (20° C, C₆D₆): (a) before irradiation; (b) during UV irradiation (40 s after the start of irradiation); (c) after irradiation.

bond of Me_3SnCl (see Figs. 2 and 3, and Table 1). The effects can be explained by the formation of radical pairs which are similar to those formed in the reactions of thermally generated Me_2Ge with halogen-containing compounds [5,14]. The radical pairs formed in the reactions of Me_2E with PhCH₂Br and Me_3SnCl were in a singlet state, as could be deduced from the CIDNP effects analysis based on Kaptein's rules [13].

Fig. 3. ¹H CIDNP during photolysis of **Ib** in the presence of Me₃SnCl (20 °C, C_6D_6); (a) before irradiation; (b) during UV irradiation (40 s after the start of irradiation); (c) after irradiation.

The insertion product, $PhCH_2SiMe_2Br$ (IV), is formed by recombination of the radical pair III (cage product). The formation of Me_2SiBr_2 (a 'SiMe_2Br radicals escape product) and toluene was also observed in the reaction of Ia with $PhCH_2Br$. However, it must be pointed out that UV irradiation of a benzene solution of $PhCH_2Br$ also produced noticable quantities of toluene.

The CIDNP effects observed in the reaction of Me_2Ge with Me_3SnCl show that the insertion occurs via a cage abstraction-recombination process, but not via a one-step concerted mechanism as proposed earlier [4]. The absorption signal of Me_3Sn -group (instead of the proposed emission signal) could be explained by the exchange process between excess Me_3SnCl and the positive polarized diffusing Me_3Sn radicals.

An analysis of the CIDNP signals of insertion products IV and VI indicates the singlet character of the reactive Me_2E (E = Si,Ge) species. The singlet state of the reactive dimethylgermylene, thermally or photochemically generated from Ib, was also confirmed in refs. 8,9,14.

Experimental

Norbornadienes Ia,b were photolyzed in quartz NMR tubes directly in the probe of a ¹H NMR spectrometer (JEOL FX 90Q, pulsed, 90 MHz) with UV light of an Hg high pressure lamp (DRSH-500, 500 W, UFS-2 filter). The photolytical part of equipment was synchronized by a computer to the NMR spectrometer. NMR spectra were recorded after 40 s UV irradiation of the samples. The accumulation time of the FID is 4.5 s. The pulsed spectra were taken with 1 scan. The concentration of norbornadienes Ia,b in the samples was $5 \times 10^{-3} M$.

References

- 1 B. Mayer and W.P. Neumann, Tetrahedron Lett., (1980) 4887.
- 2 J.A. Hawari and D. Griller, Organometallics, 3 (1984) 1123.
- 3 W.P. Neumann and M. Schriewer, Tetrahedron Lett., 21 (1980) 3273.
- 4 M. Schriewer and W.P. Neumann, J. Am. Chem. Soc., 105 (1983) 897.
- 5 J. Kocher, M. Lehnig and W.P. Neumann, Organometallics, 7 (1988) 1201.
- 6 O.M. Nefedov, M.P. Egorov, S.P. Kolesnikov, A.M. Galminas, Yu.T. Struchkov, M.Yu. Antipin and S.V. Sereda, Izv. Akad. Nauk SSSR, Ser. Khim., (1986) 1693.
- 7 T.J. Barton, W.F. Goure, J.L. Witak and W.D. Wulff, J. Organomet. Chem., 225 (1982) 87.
- 8 M.P. Egorov, A.S. Dvornikov, S.P. Kolesnikov, V.A. Kuzmin and O.M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., (1987) 1200.
- 9 S.P. Kolesnikov, M.P. Egorov, A.S. Dvornikov, V.A. Kuzmin and O.M. Nefedov, Metalloorganicheskaya Khim., 2 (1989) 799.
- 10 G.L. Closs and Ch.E. Doubleday, J. Am. Chem. Soc., 95 (1973) 2735.
- 11 K.M. Salikov, Yu.N. Molin, R.Z. Sagdeev and A.L. Buchachenko, in: Yu.N. Molin (Ed.), Spin Polarization and Magnetic Effects in Radical Reactions. Akademiai Kiado, Budapest, 1984, 419 p.
- 12 H. Fisher and K.-H. Hellwege (Eds.), Landolt-Bornstein New Series. Numerical Data and Functional Relationship in Science and Technology; Magnet Properties of Free Radicals, Group II, Vol. 9, Part A,B,C, Springer-Verlag, Berlin, 1979.
- 13 R. Kaptein, Chem. Commun., (1971) 732.
- 14 J. Kocher and M. Lehnig, Organometallics, 3 (1984) 937.